Efficient Solver for Convection-Diffusion Equations
نویسندگان
چکیده
Title of Dissertation: On the Implementation of an Accurate and Efficient Solver for Convection-Diffusion Equations Chin-Tien Wu, Doctor of Philosophy, Nov 2003 Dissertation directed by: Dr. Howard C. Elman Department of Computer Science In this dissertation, we examine several different aspects of computing the numerical solution of the convection-diffusion equation. The solution of this equation often exhibits sharp gradients due to Dirichlet outflow boundaries or discontinuities in boundary conditions. Because of the singular-perturbed nature of the equation, numerical solutions often have severe oscillations when grid sizes are not small enough to resolve sharp gradients. To overcome such difficulties, the streamline diffusion discretization method can be used to obtain an accurate approximate solution in regions where the solution is smooth. To increase accuracy of the solution in the regions containing layers, adaptive mesh refinement and mesh movement based on a posteriori error estimations can be employed. An error-adapted mesh refinement strategy based on a posteriori error estimations is also proposed to resolve layers. For solving the sparse linear systems that arise from discretization, goemetric multigrid (MG) and algebraic multigrid (AMG) are compared. In addiiton, both methods are also used as
منابع مشابه
A Fast Solver for Convection Diffusion Equations Based on Nested Dissection with Incomplete Elimination
We present an approach for the efficient parallel solution of convection diffusion equations. Based on iterative nested dissection techniques [1] we extended these existing iterative algorithms to a solver based on nested dissection with incomplete elimination of the unknowns. Our elimination strategy is derived from physical properties of the convection diffusion equation, but is independent o...
متن کاملA Grid Solver for Reaction-Convection-Diffusion Operators1
In this paper, we present and analyze the performance of a fast parallel distributed computing time integration procedure for systems of Reaction-Convection-Diffusion equations. Typical applications include large scale computing of air quality models or population models in biology for which the main solver corresponds to a ReactionConvection-Diffusion operator. One starts from a stabilized exp...
متن کاملA Comparison of Geometric and Algebraic Multigrid for Discrete Convection-diffusion Equations
The discrete convection-diffusion equations obtained from streamline diffusion finite element discretization are solved on both uniform meshes and adaptive meshes. The performance of geometric multigrid method (GMG) and algebraic multigrid method (AMG), both as a solver and as a preconditioner of the generalized minimal residual method (GMRES), are evaluated. Our numerical results show that GMR...
متن کاملA Filtering technique for System of Reaction Diffusion equations
We present here a fast parallel solver designed for a system of reaction convection diffusion equations. Typical applications are large scale computing of air quality models or numerical simulation of population models where several colonies compete. Reaction-Diffusion systems can be integrated in time by point-wise Newton iteration when all space dependent terms are explicit in the time integr...
متن کاملAn iterative solver for the Oseen problem and numerical solution of incompressible Navier-Stokes equations
Incompressible unsteady Navier–Stokes equations in pressure – velocity variables are considered. By use of the implicit and semi-implicit schemes presented the resulting system of linear equations can be solved by a robust and efficient iterative method. This iterative solver is constructed for the system of linearized Navier–Stokes equations. The Schur complement technique is used. We present ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003